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Large Language Models (LLMs) demonstrate strong performance on various natural language
tasks but tend to hallucinate plausible but factually incorrect answers, reducing their applicability in
sensitive domains such as medicine. Retrieval-Augmented Generation (RAG) with Knowledge
Graphs (KG) can help mitigate hallucinations by providing the LLM with necessary context.
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A systematic literature review was conducted
on methods integrating KGs into LLM inference
with the clear aim of mitigating hallucinations.
Search strings were constructed to find relevant
work with IEEE Xplore, ACM Digital Library and
Google Scholar. Publications had to be English
primary literature, peer-reviewed or cited more
than 50 times, and had to cover a method for
KG integration into LLM inference as a main
topic. Each selected publication was assigned a
score based on nine questions about method
clarity, applicability and evaluation. The nine
highest-scoring publications were selected for in-
depth analysis and synthesis.

Methodology

• How can KGs be integrated into LLM inference to mitigate hallucinations? 
• What is the structure of the integrated KGs and where do they come from?
• To what extent does the integration of KGs improve the quality of LLM answers? 
• What other advantages does the integration of KGs have?
• What challenges arise when integrating KGs?

Research Questions
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LLM baseline Approach

All approaches start with the extraction of entities from the input with an LLM. Some methods 
also extract additional insights, like a relation path to apply to the KG or a hop number for later 
traversal. Some approaches use extracted entities directly as starting points in the KG while 
others use vector similarity to find semantically similar entities. KG traversal varies 
strongly by method. Lightweight approaches apply an extracted relation path from the starting 
entity or extract adjacent nodes based on the KG structure. More computationally intensive 
approaches traverse the KG step-by-step by letting an LLM decide which adjacent relation or entity 
is most relevant to the question. Prompt Engineering is crucial to insert derived triples or 
reasoning paths as context in the LLM prompt for answering the query.
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Benchmarks

Most approaches use popular, publicy accessible KGs like Freebase, WikiData (general knowledge) 
or ConceptNet (semantic word relationships) or PrimeKG (disease knowledge). Some approaches
constructed their own domain-specific KG, modelling a car manual, traditional Chinese folklore
or public complaints. KGs tend to have a simple structure. Some use classes or specify constraints
for certain relations, but none are based on formal, e.g., description logics.

Used Knowledge Graphs

LLM hallucinations can be mitigated through KG integration in various ways, with most analyzed 
approaches relying on shallow traversal and semantic similarity. Further advantages of KG 
integration include improved reasoning capability through reasoning paths, efficient inclusion 
of new knowledge without having to retrain the LLM, and improved explainability of results 
thanks to explicit KG knowledge. Two major challenges of KG integration are described in the 
analyzed publications: Incorrect traversal when the question demands a long reasoning chain or 
when an LLM agent for step-by-step KG traversal is offered too many adjacency relations at once, 
and computational complexity due to several LLM requests before the generation of the final 
response. While the approaches mostly rely on relatively shallow traversal and semantic similarity, 
we advocate for integrating LLMs with symbolic reasoners to improve inference quality and 
explainability. This could include translation of natural language queries into formal query languages 
(e. g. SPARQL, Cypher), deeper exploitation of graph schema (e. g. property constraints) and 
ontological reasoning based on logical axioms (e. g. transitivity, subclasses).

The analyzed publications use various benchmarks to demonstrate the factuality and reasoning
improvement achieved through their approach. Most use Knowledge Base Question Answering
benchmarks which evaluate systems that answer natural-language questions based on a given
knowledge base, including WebQuestionsSP (WebQSP), ComplexWebQuestions and
SimpleQuestions. Three studies created their own benchmarks by commissioning test subjects
to formulate questions or by extracting questions from defined databases and websites. The
benchmark scores show that KG integration improves the performance of LLMs for different types of
questions, with KBQA improvements ranging from 4% to 320%. Improvements in
benchmarks with complex questions imply, that providing an LLM with reasoning paths from a KG
not only improves its factual grounding but also its reasoning capabilities.Search results via:

IEEE Xplore (n=18)
ACM Digital Library (n=35)
Google Scholar (Top 50)

Checked publications
(n=103)

Assessed based on full text
(n=14)

Included publications for
detailed analysis (n=9)

excluded publications
(n=89)

low ranked
publications (n=5)
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